Inorganic Chemistry

Reversible Chalcogen-Atom Transfer to a Terminal Uranium Sulfide

Danil E. Smiles, Guang Wu, and Trevor W. Hayton*

Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara California 93106, United States

Supporting Information

ABSTRACT: The reaction of elemental S or Se with $[K(18\text{-}crown\text{-}6)][U(S)(NR_2)_3]$ (1) results in the formation of the new uranium(IV) dichalcogenides $[K(18\text{-}crown\text{-}6)][U(\eta^2\text{-}S_2)(NR_2)_3]$ (2) and $[K(18\text{-}crown\text{-}6)][U(\eta^2\text{-}SSe)(NR_2)_3]$ (5). The further addition of elemental S to 2 results in the formation of $[K(18\text{-}crown\text{-}6)][U(\eta^3\text{-}S_3)(NR_2)_3]$ (3). Complexes 2, 3, and 5 can be reconverted into 1 via the addition of R_3P (R = Et, Ph), concomitant with the formation of R_3P =E (E = S, Se).

The addition of sulfur to an organic substrate provides L convenient access to a variety of useful products, such as thiiranes, which serve as attractive starting materials for a diverse array of sulfur-containing compounds.^{1–6} The use of S_8 as the sulfur source in these reactions is particularly attractive because it is both cheap and atom economical. However, catalysts that can perform S-atom transfer using S_8 are rare,^{4,5} and those that are known have limited scope.^{6–11} For example, $[(EtO)_2PS_2)_2Mo=O]$ can catalyze S-atom transfer from S₈ to a small selection of activated olefins,^{9,10} but other substrates have proven more challenging. Interestingly, in this example, the active S donor is likely $[(EtO)_2PS_2)_2Mo=O(\eta^2-S_2)]$. This complex transfers an S atom to the olefin, forming a thiirane and $[(EtO)_2PS_2)_2Mo=O(S)]$; the latter then reacts with S₈ to regenerate [(EtO)₂PS₂)₂Mo=O(η^2 -S₂)]. Similarly, Bergman and co-workers demonstrated that $[Cp_{2}^{*}Ti(\eta^{2}-S_{2})]$ could transfer an S atom to PR_3 (R = Me, Ph), forming the monosulfide [Cp*2Ti(S)]. This complex could be converted back to the disulfide via the addition of S8. Interestingly, $[Cp_{2}^{*}Ti(\eta^{2}-S_{2})]$ reacts with another equiv of sulfur to give a trisulfide complex, $[Cp_{2}^{*}Ti(\kappa^{2}-S_{3})]^{12,13}$ Several other metal complexes are also competent for catalytic S-atom transfer; however, they invariably use thiiranes as the S-atom source.^{4,5,14} These aforementioned limitations point to the need for further exploration of chalcogen-atom reactivity with metal complexes. Herein, we demonstrate reversible chalcogen-atom transfer to a terminal uranium sulfide using elemental S and Se as the chalcogen sources. This represents the first reported reactivity study for a terminal chalcogenide of uranium.

Recently, we reported the synthesis of a terminal uranium-(IV) monosulfide complex, $[K(18\text{-}crown-6)][U(S)(NR_2)_3]$ (1; $R = SiMe_3$), via oxidation of $[U(NR_2)_3]$ with KSCPh₃.¹⁵ We have subsequently endeavored to study the reactivity of this complex with chalcogens and chalcogen sources. Thus, the reaction of 0.125 equiv of S₈ with 1, in tetrahydrofuran (THF), results in the formation of a red-orange solution. Crystallization from Et₂O/pentane affords the new uranium(IV) disulfide, [K(18-crown-6)][U(η^2 -S₂)(NR₂)₃] (2), as red-orange crystals in 59% yield (Scheme 1).

Scheme 1. Reversible S-Atom Transfer between Uranium Sulfides

Complex 2 crystallizes in the monoclinic space group $P2_1/n$, and its solid-state molecular structure is shown in Figure 1.

Figure 1. Solid-state molecular structures of complexes 2 (left) and 3- Et_2O (right), with 50% probability ellipsoids. Et_2O solvate and H atoms are omitted for clarity.

Complex **2** features a distorted tetrahedral geometry about uranium [N1–U1–N2 = 102.4(3)°, N2–U1–N3 = 108.1(3)°, and N1–U1–N3 = 128.4(3)°], and the U–S bond distances are quite different [U1–S1 = 2.589(4) Å and U1–S2 = 2.747(3) Å], both attributable to steric crowding between the $[\eta^2$ -S₂]^{2–} moiety and the bulky silylamide coligands.¹⁶ The S–S bond distance in 2 [2.160(7) Å] is longer than those of other uranium disulfides,^{17–22} possibly because of the coordination of the [K(18-crown-6)]+ moiety to the [S2]2- ligand. The K1–S1 bond distance in **2** [3.176(5) Å] is similar to that of **1** (ave K–S

Received: October 13, 2014 Published: December 1, 2014

= 3.112 Å) and shorter than the K–E bond distances of the structurally identical diselenide, $[K(18\text{-crown-6})][U(\eta^2\text{-}Se_2)-(NR_2)_3]$ (ave K–Se = 3.260 Å), and ditelluride, $[K(18\text{-crown-6})][U(\eta^2\text{-}Te_2)(NR_2)_3]$ (ave K–Te = 3.704 Å),¹⁶ consistent with the smaller ionic radii of S^{2–} versus Se^{2–} and Te^{2–}. We do not believe that the K⁺ cation plays a role in stabilizing the $[\eta^2\text{-}S_2]^{2-}$ moiety. As evidence, $[K(2,2,2\text{-cryptand})][U(S)(NR_2)_3]$, which we have previously prepared,¹⁵ appears to feature reactivity identical with that of its 18-crown-6 analogue, **1**.

Similar to 1, complex 2 also reacts with elemental S. The addition of 0.125 equiv of S_8 to complex 2 results in the clean formation of uranium(IV) trisulfide, $[K(18 \text{-crown-6})][U(n^3 \text{-}$ S_3 (NR₂)₃ (3; Scheme 1). Crystallization from Et₂O affords 3 as vibrant orange crystals in 34% yield. Complex 3 crystallizes in the triclinic space group $P\overline{1}$ as an Et₂O solvate, 3 Et₂O (Figure 1). Complex 3 is the first reported uranium trisulfide and features the unprecedented $[\eta^3-S_3]^{2-}$ ligand. This contrasts with other structurally characterized complexes containing the terminal $[S_3]^{2-}$ ligand, which feature a κ^2 -coordination mode.²³⁻²⁸ As was observed for 2, complex 3 exhibits unequal U-S bond distances $[U1-S1 \ 2.835(1)]$ Å, U1-S2 = 2.819(1)Å, and U1-S3 = 2.760(1) Å], a consequence of the steric clash between the $[\eta^3 - S_3]^{2-}$ ligand and the bulky silylamide ligand. The S–S bond distances in 3 [S1-S2 = 2.059(2)] Å and S2-S3= 2.066(1) Å] are shorter than those of **2** but similar to those of other terminal uranium disulfides (ave 2.08 Å).¹⁷⁻²¹

We also explored the scope of chalcogen-atom transfer to the terminal sulfide ligand in 1. Thus, the addition of 1 equiv of Se to a solution of complex 1, in a 2:1 mixture of Et₂O/THF, results in a color change to dark orange-red over the course of 2 h. Crystallization from Et₂O affords the selenosulfide complex $[K(18\text{-crown-}6)][U(\eta^2\text{-}SSe)(NR_2)_3]$ (5) as a dark orange-red crystalline solid in 52% yield (eq 1). Complex 5 crystallizes in

the monoclinic space group $P2_1$ with two independent molecules in the asymmetric unit (Figure 2). Complex 5

represents the first structurally characterized complex with a terminal $[SSe]^{2-}$ ligand; other selenosulfide complexes feature the bridging $[\mu-\eta^2:\eta^2]$ binding mode.²⁹⁻³⁶ Complex 5 is isostructural to 2, and, not surprisingly, its S-Se bond distances [Se1-S1 = 2.242(3) and Se2-S2 = 2.240(3) Å] are longer than the S-S distance in 2 but shorter than the Se-Se distances in $[K(18 \text{-crown-6})][U(\eta^2 \text{-} \text{Se}_2)(\text{NR}_2)_3]$ (ave 2.367 Å).¹⁶ In addition, the U–S [2.664(2) and 2.653(2) Å] and U– Se [2.845(1) and 2.851(1) Å] bond distances in 5 are comparable to the U-S distances in 2 (ave 2.668 Å) and the U-Se distances in $[K(18\text{-crown-6})][U(\eta^2\text{-Se}_2)(NR_2)_3]$ (ave 2.824 Å), respectively.¹⁶ Attempts to synthesize the analogous tellurosulfide complex were unsuccessful. Addition of elemental Te to complex 1, in pyridine- d_5 , results in no reaction after 60 h, as determined by ¹H NMR spectroscopy (Figure S8 in the SI). The inability of elemental Te to oxidize the S^{2-} ligand of 1 is consistent with the lower oxidation potential of Te versus S and Se.³

Complexes 2, 3, and 5 were also characterized by ¹H NMR spectroscopy. In pyridine- d_5 , complex 2 exhibits two broad resonances at -8.20 and 3.52 ppm, assignable to the methyl groups of the silylamide ligands and the 18-crown-6 moiety, respectively (Figure S4 in the SI). Complexes 3 and 5 feature nearly identical chemical shifts, but the silylamide resonance for 3 is extremely broad (full width at half-maximum = 2150 Hz; Figure S5 in the SI), possibly reflecting the slow rotation about the U–N bond due to the presence of the bulky $[\eta^3-S_3]^{2-1}$ ligand. The near-IR spectra of 2, 3, and 5 are all consistent with the presence of the U^{IV} metal ion (Figures S19–S21 in the SI), $_{15,22}^{15,22}$ which is significant because it confirms that no metal-based redox chemistry is occurring; all redox chemistry is localized on the chalcogenide ligand.

Previously, we demonstrated that the reaction of [K(18crown-6)][U(η^2 -Se₂)(NR₂)₃] with Ph₃P afforded [K(18-crown-6)][U(Se)(NR₂)₃] and Ph₃P=Se.¹⁶ This result encouraged us to explore the reactions of complexes 2 and 3 with phosphines. Gratifyingly, the addition of 1 equiv of Et_3P to a cold (-25 °C) solution of 3, in Et₂O, results in a color change from orange to red-orange over the course of 1 h. Crystallization from Et₂O affords 2 as a red-orange crystalline solid in 59% yield (Scheme 1). Also formed in this reaction is $Et_3P=S$, as confirmed by the in situ ³¹P{¹H} NMR spectrum of the reaction mixture (Figure S3 in the SI).^{38,39} Similarly, the addition of PPh₃ to a solution of complex 2 in pyridine- d_5 results in the formation of 1 and $Ph_3P=S$ (Scheme 1), as evidenced by in situ ¹H and ³¹P{¹H} NMR spectroscopy, respectively (Figures S9 and S10 in the SI).^{15,38} The reactivity of complex 5 with phosphines was also probed. The reaction of 5 with 1 equiv of Et₃P results in the rapid formation of Et₃P=Se and complex 1, as determined by ¹Ĥ and ³¹P{¹H} NMR spectroscopies (eq 1 and Figures S11 and S12 in the SI).^{15,40} No evidence for the formation of $[K(18-crown-6)][U(Se)(NR_2)_3]$ or $Et_3P=S$ is observed in the reaction mixture, which is surprising considering that the P-S bond dissociation enthalpy is greater than that of P-Se.⁴¹ That said, the longer U-Se bond versus the U-S bond in 5 suggests that the barrier for Se transfer is lower than that for S transfer, which provides a possible kinetic explanation for the observed chemoselectivity.

The reactivity of complex 1 closely parallels that of several transition-metal systems, such as $[Cp*_2Ti(S)]$.^{12,13} However, 1 is the first actinide chalcogenide that undergoes demonstrated reversible chalcogen-atom transfer. Previous chalcogen reactivity with the actinides has been restricted to either atom

addition or atom abstraction. For example, Meyer and coworkers reported that $[((^{Ad}ArO)_3N)U(DME)]_2(\mu-Se)$ reacts with elemental Se to form $[((^{Ad}ArO)_3N)U]_2(\mu-\eta^2:\eta^2-Se_2)(\mu-DME),^{42}$ but the Se atom abstraction reaction was not described. Similarly, Mazzanti and co-workers reported that the uranium(V) disulfide $[U((SiMe_2NPh)_3-tacn)(\eta^2-S_2)]$ reacts with Ph_3P to give Ph_3P=S, but the metal-containing component of the reaction mixture proved to be intractable.¹⁷

In summary, we have demonstrated that elemental S and Se react with the terminal sulfide complex 1 to generate new terminal uranium(IV) dichalcogenide complexes, 2 and 5. Importantly, this addition is reversible, and the reaction of the dichalcogenides with a phosphine regenerates complex 1, concomitant with the formation of R_3P =E (E = S, Se). This reversibility suggests that 1 could be developed as a catalyst for chalcogen-atom transfer, and we are currently exploring this possibility.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures, crystallographic details (as a CIF file), and spectral data for complexes 2-5. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: hayton@chem.ucsb.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division, under Contract DE-FG02-09ER16067.

REFERENCES

(1) Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807-8864.

- (2) Clayden, J.; MacLellan, P. Beilstein J. Org. Chem. 2011, 7, 582-595.
- (3) Sander, M. Chem. Rev. 1966, 66, 297-339.
- (4) Adam, W.; Bargon, R. M. Chem. Rev. 2004, 104, 251-262.
- (5) Donahue, J. P. Chem. Rev. 2006, 106, 4747-4783.
- (6) Saito, M.; Nakayama, J. Sci. Synth. 2008, 39, 589-658.
- (7) Poulain, S.; Julien, S.; Duñach, E. Tetrahedron Lett. 2005, 46,
- 7077–7079.
 (8) Adam, W.; Bargon, R. M.; Bosio, S. G.; Schenk, W. A.; Stalke, D. J. Org. Chem. 2002, 67, 7037–7041.
- (9) Adam, W.; Bargon, R. M.; Schenk, W. A. J. Am. Chem. Soc. 2003, 125, 3871-3876.
- (10) Adam, W.; Bargon, R. M. Chem. Commun. 2001, 1910-1911.
- (11) Arisawa, M.; Ashikawa, M.; Suwa, A.; Yamaguchi, M. *Tetrahedron Lett.* **2005**, *46*, 1727–1729.
- (12) Sweeney, Z. K.; Polse, J. L.; Andersen, R. A.; Bergman, R. G.; Kubinec, M. G. J. Am. Chem. Soc. **1997**, 119, 4543–4544.
- (13) Sweeney, Z. K.; Polse, J. L.; Bergman, R. G.; Andersen, R. A. Organometallics 1999, 18, 5502-5510.
- (14) Proulx, G.; Bergman, R. G. Organometallics 1996, 15, 133-141.
 (15) Smiles, D. E.; Wu, G.; Hayton, T. W. J. Am. Chem. Soc. 2014, 136, 96-99.
- (16) Smiles, D. E.; Wu, G.; Hayton, T. W. Inorg. Chem. 2014, 53, 10240-10247.

Communication

- (17) Camp, C.; Antunes, M. A.; Garcia, G.; Ciofini, I.; Santos, I. C.; Pecaut, J.; Almeida, M.; Marcalo, J.; Mazzanti, M. *Chem. Sci.* **2014**, *5*, 841–846.
- (18) Matson, E. M.; Goshert, M. D.; Kiernicki, J. J.; Newell, B. S.; Fanwick, P. E.; Shores, M. P.; Walensky, J. R.; Bart, S. C. *Chem.*—*Eur. J.* **2013**, *19*, 16176–16180.
- (19) Grant, D. J.; Weng, Z.; Jouffret, L. J.; Burns, P. C.; Gagliardi, L. Inorg. Chem. 2012, 51, 7801-7809.
- (20) Kwak, J.-e.; Gray, D. L.; Yun, H.; Ibers, J. A. Acta Crystallogr., Sect. E 2006, 62, i86-i87.
- (21) Sutorik, A. C.; Kanatzidis, M. G. Polyhedron 1997, 16, 3921–3927.
- (22) Brown, J. L.; Wu, G.; Hayton, T. W. Organometallics 2013, 32, 1193–1198.
- (23) Shaver, A.; McCall, J. M.; Bird, P. H.; Siriwardane, U. Acta Crystallogr., Sect. C 1991, 47, 659–661.
- (24) Hobert, S. E.; Noll, B. C.; Rakowski DuBois, M. Organometallics 2001, 20, 1370–1375.
- (25) Howard, W. A.; Parkin, G.; Rheingold, A. L. Polyhedron 1995, 14, 25-44.
- (26) Maruyama, M.; Guo, J.-D.; Nagase, S.; Nakamura, E.; Matsuo, Y. J. Am. Chem. Soc. **2011**, 133, 6890–6893.
- (27) Herberhold, M.; Jin, G.-X.; Milius, W. Angew. Chem., Int. Ed. 1993, 32, 85-87.
- (28) Shannon, R. D. Acta Crystallogr., Sect. A 1976, A32, 751-767.
- (29) Gushchin, A. L.; Llusar, R.; Vicent, C.; Abramov, P. A.; Gómez-Garcia, C. J. Eur. J. Inorg. Chem. 2013, 2013, 2615–2622.
- (30) Fedin, V. P.; Mironov, Y. V.; Sokolov, M. N.; Kolesov, B. A.; Federov, V. Y.; Yufit, D. S.; Struchkov, Y. T. *Inorg. Chim. Acta* **1990**, 174, 275–282.
- (31) Fedin, V. P.; Sokolov, M. N.; Fedorov, V. Y.; Yufit, D. S.; Struchkov, Y. T. Inorg. Chim. Acta 1991, 179, 35-40.
- (32) Mathur, P.; Sekar, P.; L. Rheingold, A.; Liable-Sands, L. M. J. Chem. Soc., Dalton Trans. 1997, 2949–2954.
- (33) Hernandez-Molina, R.; Sokolov, M.; Nunez, P.; Mederos, A. J. Chem. Soc., Dalton Trans. 2002, 1072–1077.
- (34) Alberola, A.; Llusar, R.; Triguero, S.; Vicent, C.; Sokolov, M. N.; Gomez-Garcia, C. J. Mater. Chem. 2007, 17, 3440-3450.
- (35) Hu, J.; Zhuang, H.-H.; Liu, S.-X.; Huang, J.-L. Transition Met. Chem. 1998, 23, 547–552.
- (36) Fedin, V. P.; Sokolov, M. N.; Virovets, A. V.; Podberezskaya, N. V.; Fedorov, V. Y. *Polyhedron* **1992**, *11*, 2395–2398.
- (37) Bratsch, S. G. J. Phys. Chem. Ref. Data 1989, 18, 1-21.
- (38) Baccolini, G.; Boga, C.; Mazzacurati, M. J. Org. Chem. 2005, 70, 4774-4777.
- (39) Ph_3P can also effect this transformation; however, the reaction is substantially slower.
- (40) Kuhn, N.; Henkel, G.; Schumann, H.; Frohlich, R. Z. Naturforsch. B 1990, 45, 1010–1018.
- (41) Capps, K. B.; Wixmerten, B.; Bauer, A.; Hoff, C. D. Inorg. Chem. 1998, 37, 2861–2864.
- (42) Franke, S. M.; Heinemann, F. W.; Meyer, K. Chem. Sci. 2014, 5, 942–950.